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Abstract— The δ-Matching problem calculates, for a given
text T1..n and a pattern P1..m on an alphabet of integers,
the list of all indices Iδ = {i : max

m
j=1 |Pj − Ti+j−1| ≤ δ}.

The γ-Matching problem computes, for given T and P , the
list of all indices Iγ = {i :

P
m

j=1
|Pj − Ti+j−1| ≤ γ}. When

a “don’t care” symbol occurs, the associated difference
is counted as zero. In this paper, we give experimental
results for the different matching algorithms that handle
the presence of “don’t care” symbols. We highlight some
practical issues and present experimental analysis for the
current most efficient algorithms that calculate Iδ , Iγ ,
and I(δ,γ) = Iδ ∩ Iγ , for pattern P with occurrences of
“don’t cares”. Moreover, we present our own version of
γ-Matching algorithm.

Keywords: δ-matching, γ-matching, wildcard matching,
music information retrieval.

I. INTRODUCTION

The string pattern-matching problem is to find all the
occurrences of a given pattern P1..m as a substring of
a larger text T1..n, both being sequences of symbols
(characters) drawn from a finite alphabet Σ. This problem
has plethora of applications, such as text retrieval, musi-
cal analysis, computational biology, image analysis, data
mining and network security.

In this paper we focus on a set of pattern-matching
problems that arise in computer assisted musical analysis.
A musical score can be viewed as a string over an
alphabet consisting of integers, representing the set of
notes in chromatic or diatonic notion, or the set of
intervals that appear between notes (e.g. chromatic pitch
may be represented as MIDI numbers in the range 0
through 127). In spite of such representation, existing
efficient algorithms in the field of string pattern-matching,
specifically exact matching, could not be used to solve
some problems related to musical analysis. For instance,
it could not be used for locating melodies within songs.
This is because two songs of the same melody are usually
made of “similar” notes, but rarely exactly the same.

Throughout the years, many measures to account sim-
ilarity between closely related but non-identical musical
strings have been developed. Several of such depend on
allowing some tolerance in the matching process. For
example, the δ-Matching allows a difference of at most
δ units between each symbol in the pattern and the
corresponding symbol in the text. Also, the γ-Matching
bounds the sum of the absolute differences between the
corresponding values of the pattern and the text by γ.
The combination of these two approximates is commonly

known as the (δ, γ)-Matching. (Similar measures have
been used in image template matching [3].)

Very recently, the δ-, γ-, and (δ, γ)-Matching were
extended to completely ignore the differences correspond-
ing to some positions in the pattern during the matching
process. This new variant of the problem reports the
approximate occurrences of the pattern in the text, even
if some particular notes in the pattern are played slightly
out of tune or recorded incorrectly. This special matching
problem is seen as having “don’t care”1 symbols in the
pattern, where a “don’t care” symbol is a symbol that
matches every other symbol in the alphabet including
itself.

Fast Fourier transforms (FFT) have been the basis
for designing efficient algorithms for several approximate
string-matching problems. For instance, Cole and Har-
iharan [7] presented an O(n log m)-time algorithm for
the exact pattern-matching problem with “don’t cares”.
Additionally, Clifford et. al. [6] devised an O(δn log m)-
time algorithm for the δ-Matching problem. Using same
approach, an O(δn log m) algorithm was given for the
(δ, γ)-Matching, which broke the then known bound of
O(mn) for the problem when δ is o(m/ log m). Further-
more, Clifford et. al. [6] provided a faster algorithm for
the γ-Matching problem, which runs in O(n

√

m logm)

time and is based on a divide and conquer approach.
Independently, Amir et. al. [1] also provided an algorithm
for γ-Matching that has the same time complexity as
[6]. Another efficient algorithm presented by Lipsky [13]
for the δ-Matching has running time of O(|Σ|n(log m +

|Σ|)).
Ardila et. al. [2] provided different algorithms for

handling the presence of “don’t cares” in the pattern for
the δ-, γ- and (δ, γ)-Matching problems, by extending the
then best algorithms for these problems. In the context
of δ-, γ- and (δ, γ)-Matching, the “don’t care” symbols
when aligned with any symbols in the alphabet do not
contribute any values towards the distances. To be more
precise, the distance between the “don’t care” symbol and
any symbols in the alphabet or that symbol itself is zero.
The algorithms extended in [2] are due to [1], [6], [13]
mentioned above, and have the same running time as their
original versions.

This paper presents experimental results from an empir-
ical study which was done by implementing all the algo-
rithms in [2], [6]. These results will help one to choose the

1Also known as wild card symbol.
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right algorithm for a problem in hand from the variants of
algorithms available. The γ-Matching algorithm presented
in [6] fails in some cases. We provide solutions for
these problems. We also present a new O(|Σ|n log m)-
time algorithm for the γ-Matching problem. This method
is asymptotically faster than the O(n

√

m logm)-time
algorithm due to [6], when |Σ| is o(m/ log m). A way
of improving the δ-Matching algorithm due to [2] is also
given.

The outline of the paper is as follows: Some pre-
liminaries are described in Section II. In Section III
we present the two δ-Matching algorithm and suggest
ways for improving their performance. A γ-Matching
algorithm that runs in O(|Σ|n log m) and a rectification
for an existing γ-Matching algorithm are given in Section
IV. In Section 5, we briefly outline the (δ, γ)-Matching
algorithm. All the algorithms presented in the paper
handle the occurrence of “don’t cares” in the pattern. The
experimental results are presented in Section VI. Finally,
we conclude in Section VII.

II. PRELIMINARIES

Throughout the paper, the alphabet Σ is assumed to
be an interval of integers and considered to be Σ =

{1, 2, ..., |Σ|}. A text T = T1..n is a string of length
n defined on Σ. Ti is used to denote the i-th element
of T , and Ti..j is used as a notation for the substring
TiTi+1 · · ·Tj of T , where 1 ≤ i, j ≤ n. Similarly, a
pattern P = P1..m is a string of length m defined on
Σ ∪ {�}, where � is the don’t care symbol.

The “don’t care” matches every symbol including itself,
that is, � = a for each a ∈ Σ∪{�}. A pattern P is said to
occur in T at position i if Pj = Ti+j−1, for 1 ≤ j ≤ m.

Let δ, γ be two given integers, then two patterns P 1 and
P 2 are said to be δ-matched (denoted as P 1 =δ P 2), if
maxm

j=1 |P
1
j −P 2

j | ≤ δ. Additionally, P 1 and P 2 are said
to be γ-matched (denoted as P 1 =γ P 2), if

∑m
j=1 |P

1
j −

P 2
j | ≤ γ, where | �− a | = | a− � | = 0, ∀ a ∈ Σ∪{�}.

The δ, γ and (δ, γ)-Matching problems are defined as
follows:

Definition 1 (δ-Matching Problem). For a given text T ,
pattern P and integer δ, the δ-Matching (also known
as L∞-Matching) problem is to calculate the set of all
indices, Iδ, such that if Ti..i+m−1 =δ P , then i ∈ Iδ. In
other words, Iδ = {i : maxm

j=1 |Pj − Ti +j−1| ≤ δ}.

Definition 2 (γ-Matching Problem). For a given text T ,
pattern P and integer γ, the γ-Matching (also known
as L1-Matching) problem is to calculate the set of all
indices, Iγ , such that if Ti..i+m−1 =γ P , then i ∈ Iγ .
In other words, Iδ = {i :

∑m
j=1 |Pj − Ti +j−1| ≤ γ}.

Definition 3 ((δ, γ)-Matching Problem). For a given
text T , pattern P and integers δ, γ; the (δ, γ)-Matching
problem is to calculate the set of all indices, I(δ,γ), such
that: ∀ i ∈ I(δ,γ),

(1) Ti..i+m−1 =δ P , and
(2) Ti..i+m−1 =γ P .

In this paper, we will assume the standard RAM model
of computation, which allow arithmetic on log N bit
numbers in O(1) time, where N is of the order of the
maximum problem size. For such model, the following
theorem is standard and crucial to our algorithms.

Theorem 1. Consider two numerical strings X1..n and
Y1..m. Then, the convolution Z1..n = X ⊗ Y can be
computed accurately and efficiently in O(n log m) time
using Fast Fourier Transform (FFT).

The above theorem holds because the Fourier transform
converts convolution into elementwise multiplication. The
theorem presents one of the early breakthroughs in algo-
rithms with considerable numbers of applications (see [9],
[11] and [12]).

III. δ-MATCHING WITH DON’T CARES ALGORITHM

Informally, the δ-Matching problem computes all in-
dices i such that the maximum |Pj−Ti +j−1| over all j’s
is no larger than δ. In the following subsections, we briefly
present two algorithms for the δ-Matching problem in the
presence of “don’t cares” (Both algorithms were presented
in [2].). When necessary, we will highlight some practical
issues and suggest practical solutions.

A. An O(|Σ|n(log m + |Σ|))-Time Algorithm
Original Algorithm. Based on ideas used in [13]

to compute L∞-matching for strings without “don’t
cares”, Ardila et. al. [2] presented an algorithm for the
δ-Matching with “don’t cares”. The idea is to encode the
text and the pattern in such way that one convolution,
and linear time pass on the convolution’s output are
sufficient to compute the desired output. The main steps
of the algorithm are as follows:

Step 1 : Encode both the text T and the pattern P in such
way that every symbol σ ∈ Σ ∪ {�} is represented by a
binary string, over {0, 1}∗, of length 2|Σ|. In particular,
σ = Ti (1 ≤ i ≤ n) will be replaced by the sequence
ct(σ) = ct(σ)1, . . . , c

t(σ)2|Σ|, where

ct(σ)j =

{
1, if j = |Σ|+ σ
0, otherwise for 1 ≤ j ≤ 2|Σ|.

Additionally, every symbol σ = Pi (1 ≤ i ≤ m) will
be replaced by

cp(σ)j =

{
1, if j = σ and σ 
= �
0, otherwise for 1 ≤ j ≤ 2|Σ|.

Step 2 : Here, the algorithm performs the convolution R =

ct(T )⊗ cp(P ).

Step 3 : Finally, we construct a string D1..n, over {0, 1}∗,
such that Di (1 ≤ i ≤ n−m + 1) will be 1, if and only
if, P occurs at position i of T ; otherwise it will be 0. The
values of D are obtained as follows:

Di =

{
1, if

∑q+δ
j=q−δ R[j] = m′

0, otherwise
1 ≤ i ≤ n−m + 1,
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where q = (2(i− 1) + 1)|Σ| + 1, and m′ is the number
of non-“don’t cares” in P .

In this way the algorithm computes the desired results,
Iδ = {i : Di = 1}. This concludes the algorithm.

Known Issues. The above algorithm is based on the
assumption that the alphabet is Σ = {1, 2, . . . |Σ|}. This
assumption gives rise to two issues:

1) In practice, 0 is a valid numerical representation
of musical notes. For instance, lowest note upon a
MIDI controller is a C and this note is assigned note
number 0. Moreover, when a melody is represented
as a string of pitch intervals, the string might
include negative numbers.

2) The real musical representation might have all notes
in a small range, but not starting from 1. For exam-
ple, consider C-minor 7 sequence {60, 63, 67, 70}.
If the |Σ| is taken as 70, the algorithm gives the
correct result, but would be rather slow. Because,
each element will be encoded to a binary string of
length 140.

Solutions. By modifying the encoding scheme, the above
issues can be addressed efficiently. The idea is to map
the elements in the range {a, . . . , b} to another but equal
range, {1, . . . , b − a + 1}. Applying such technique to
the above example, {60, 63, 67, 70}, yields {1, 4, 8, 11}.
Since both pattern and text elements are mapped this way,
the relative difference will not be affected.

B. An O(δn log m)-Time Algorithm
Original Algorithm. In [6], an O(δn log m)-time algo-
rithm for the δ-Matching problem without “don’t cares”
is presented. A function that is zero when there is a
match between two symbols and bounded away from zero
otherwise, is constructed. Standard properties of the even
periodic functions and their discrete cosine transform [9]
are used to achieve such goals. An even periodic function
fδ(x) that is equal to x2 for |x| ≤ δ is used to construct
the desired function as follows:

d(x − y) = (x − y)
2
− fδ(x− y).

Note that d(x− y) = 0 if |x− y| ≤ δ, and d(x− y) >
0 otherwise. Thus, to perform δ-Matching we need to
compute

∑m
j=1 d(Pj − Ti+j−1), for 1 ≤ i ≤ n − m +

1. Calculating each d(Pj − Ti+j−1) involves O(δ) inner
products and requires a total of O(δn log m) running time;
see [6] for details.

Ardila et. al. [2] extended the above algorithm to
handle the occurrences of the “don’t cares” in the pattern
as follows:

Step 1 : If J � = {j | Pj = �}. Then, a new pattern P (0)

is created as follows:

P
(0)
j =

{
0, if j ∈ J �;

Pj , otherwise.

Additionally, the values D1
i =

∑m
j=1 d(P

(0)
j −Ti+j−1),

for 1 ≤ i ≤ n−m+1 are computed using the δ-Matching
algorithm in [6].

Step 2 : The aim of this step is to compute for each
position i in T the value

∑
j∈J � d(Ti+j−1). To achieve

this, a new pattern P (1) is computed as follow:

P
(1)
j =

{
1, if j ∈ J �;

0, otherwise.

Additionally, a new text T ′ is computed as follows:
T ′i = d(Ti) = T 2

i − fδ(Ti). Once P (1) and T ′ are
obtained, the values

∑
j∈J � d(Ti+j−1), for 1 ≤ i ≤

n−m + 1, can be easily obtained as D2 = T ′ ⊗ P (1).

Step 3 : In this step the actual δ-Matching is computed as
follows:

Di = D1
i −D

2
i .

Observe that Iδ = {i : Di = 0}. This concludes the
algorithm.

IV. γ-MATCHING WITH DON’T CARES ALGORITHM

Informally, the γ-Matching problem computes all in-
dices i such that the sum of differences |Pj − Ti +j−1|

over all j’s is no larger than γ. In the following sub-
sections, we present two algorithms for the γ-Matching
problem in the presence of “don’t cares”. The first algo-
rithm was presented in [2]. During the implementation,
the algorithm failed to calculate the desired output. We
will briefly explain the algorithm and provide corrections.

A. The O(n
√

m log m)-Time Algorithm
Using the divide and conquer approach, Clifford et.

al. [6] presented an O(n
√

m log m)-time algorithm for
the γ-Matching problem. This algorithm was extended by
Ardila et. al. to handle the occurrences of “don’t cares” in
the pattern; see [2] for details. We found some problems
with the original γ-Matching algorithm. Therefore, we
will elaborate on each step of the algorithm. Then, we will
explain the arisen problems and the proposed solutions.

Original Algorithm. The γ-Matching algorithm is based
on the following observation: Given two numbers x, and
y and an arbitrary value θ, if it is known that x and y are
on the opposite side of θ, the absolute value |x− y| can
be calculated as the sum of four products

|x− y| = xIxJy − IxyJy + JxyIy − xJxIy, (1)

where

Ia =

{
1, if a > θ

0, otherwise;
and Ja =

{
1, if a ≤ θ

0, otherwise.
(2)

Using a number of θ values, namely θ1, . . . , θb rather
than using a single θ, a divide-and-conquer strategy is
applied to the γ-Matching problem as follows:

Step 1: Calculate the integer b = �

√
m/logm �.
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Step 2: Sort the values in P1..m and let A be the
associated array of indices of these values. Partition A
into b successive arrays denoted by {A1, A2 . . . Ab}, each
having a length of �m/b�. Define θ values in this way:
θ0 = −∞ (an impossibly small value in p or t), and
θk = max{pj : j ∈ Ak} for k = 1, . . . , b.

Step 3: Sort the elements in T and divide them into b
groups as shown below. Let Bk be the array of indices
of k-th group.

θ0 < Ti ≤ θ1 θ1 < Ti ≤ θ2 . . . θb−2 < Ti ≤ θb−1 θb−1 < Ti

Step 4: For each θk (1 ≤ k ≤ b), define Ik, and Jk

functions (compare with (2))

Ik(x) =

{
1, if x > θk

0, otherwise

and

Jk(x) =

{
1, if θk−1 < x ≤ θk

0, otherwise.
(3)

Additionally, for each k, create four new text strings
εk1(T ), εk2(T ), εk3(T ) and εk4(T ) with j-th elements that
are respectively TjIk(Tj), Ik(Tj), Jk(Tj) and TjJk(Tj)

for each k = 1, . . . , b. Correspondingly, create four
new pattern strings υk1(P ), υk2(P ), υk3(P ), and υk4(P )

that are respectively Jk(Pj),−PjJk(Pj), PjIk(Pj) and
−Ik(Pj).

The idea is straight forward now: the total difference
can be calculated using b steps, each includes 4 summa-
tions as follows:

m∑
j=1

|Pj − Ti+j−1| =

b∑
k=1

4∑
l=1

υkl(P )εkl(T ) + remainder,

where the remainder will be calculated in the next step.

Step 5: Here we have to deal with the cases ignored in
Step 4. Recall that (1) calculates the difference only when
the two values are on opposite sides of the threshold θ.
Therefore, the differences of the pairs (Pj , Ti+j−1) where
Pj ∈ Ak and Ti+j−1 ∈ Bk for some k would have been
omitted, as the pairs of text and pattern elements in the
associated arrays (Ak, Bk) lie on the same side to all
thresholds θk (1 ≤ k ≤ b). This omitted differences have
to be computed separately and added to the corresponded
total difference. This can be done in a straightforward
manner, see [6] for details.

Known Issues. The above algorithm does not seem to
work as stated. This is mainly due to the asymmetrical
behavior of Equation (1) when x or y coincides with θ.
This is better explained with two examples.

Example 1. If θ = 20, x = 18 and y = 20, then
calculating |x− y| using the Equation (1) incorrectly
gives 0. Here, θ equals the larger number.

Example 2. If θ = 20, x = 20 and y = 22, then
calculating |x− y| using Equation (1) correctly gives 2.
Here, θ equals the smaller number.

The examples clearly show that when θ equals the
smaller of x and y, the difference is calculated correctly
and when θ equals the larger of x and y it is evaluated
as zero irrespective of the actual difference.

Recall that the main idea of the algorithm is to ac-
cumulate the contributions to the total difference from
pairs of values (Pj , Ti+j−1) on opposite sides of specific
thresholds first, and then collect the remaining terms in
the second stage of the algorithm. In the following we
explain the two main problems in the algorithm.

1) Consider iteration k where θk is used as the thresh-
old and the differences between the pattern elements
{Pj |j ∈ Ak} and the text elements {Tj |j ∈

{Bk+1 ∪ . . . Bb}}, and the differences between the
text elements {Tj |j ∈ Bk} and the pattern elements
{Pj |j ∈ {Ak+1 ∪ . . . Ab}} are accumulated.
Let’s consider the differences between the ele-
ments in the partitions (Ak+1, Bk) among other
differences computed at the k-th iteration. For the
differences to be accumulated during this iteration,
the elements in these partitions must be on the
opposite side of θk. But this may not be the
case for some elements. There may be elements
in Ak+1 that are equal to θk. At the same time,
we know for certain that the elements in Bk are
less or equal to θk. Therefore, pairs of values
(Pj , Ti+j−1) where {Pj |Pj = θk and j ∈ Ak+1}

and {Ti+j−1 |Ti+j−1 < θk and (i + j − 1) ∈ Bk}

will not be on the opposite side of θk, rather it
would be like the case shown in Example 1 above
and will be omitted in Step 4. They are not handled
in Step 5 too. Therefore, at the end of the algorithm,
the total difference might have smaller values than
the actual values at some positions.

2) Consider the partitions Ak and Bk for some 1 ≤

k ≤ b. By definition, the block Ak contains the in-
dices j of the pattern elements Pj such that θk−1 ≤

Pj ≤ θk, and the block Bk contains all the indices
j of the text elements Tj such that θk−1 < Tj ≤ θk

for 1 ≤ k < b and Bb contains all the indices j
of the text elements Tj such that Tj > θb−1. Thus,
there may be elements belonging to Ak, which are
equal to θk−1 and there may be elements belonging
to Bk, which are greater than θk−1. When θk−1 is
used as the threshold, by what we established earlier
using the Example 2, the difference between these
elements, i.e., {Pj | Pj = θk−1 and j ∈ Ak} and
{Tj | tj > θk−1 and j ∈ Bk}, will be computed
correctly and added to the total difference in Step
4 of the algorithm.
In spite of this, the next step, i.e., Step 5, of the
algorithm makes a wrong assumption that all pair
of text and pattern elements that lie in associated ar-
rays (Ak, Bk) for some k would have been omitted
in Step 4 and computes and adds them again to the
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total difference. However, this assumption does not
hold for some elements. So the difference between
the elements {Pj | Pj = θk−1 and j ∈ Ak} and
the those elements {Tj | Tj > θk−1 and j ∈ Bk}

are added to the total difference exactly twice.
Solutions. The first problem can be addressed by mod-
ifying Step 4 of the algorithm as follows: For each θk

(1 ≤ k ≤ b − 1), define different I, and J functions
(compare with (3))

Ik(x) =

{
1, if x ≥ θk

0, otherwise,

and

Jk(x) =

{
1, if θk−1 < x ≤ θk

0, otherwise.
(4)

Due to this modification, difference between some pairs
of text and pattern elements that lie in associated arrays
(Ak, Bk) for some k will be added to the total difference
at Step 4 itself. To be precise, {Pj | Pj = θk and j ∈
Ak} and {Tj | Tj < θk and j ∈ Bk} will be added
to the total difference at Step 4. This is quite similar to
the second problem above and can be solved together by
modifying Step 5 of the algorithm as follows:

Handling the omitted cases (Step 5)
Input: {A1, A2 . . . Ab}, {B1, B2 . . . Bb}, b, P, T, M, θ

Output: M

1. for k = 1 to b − 1 do
2. for each element j ∈ Bk do
3. for each element i ∈ Ak do
4. if ((j ≥ i) and (pi /∈ {θk−1, θk}) and (tj �= θk)) then
5. Mj−i+1 ← Mj−i+1 + |pi − tj |

6. for each element j ∈ Bb do
7. for each element i ∈ Ab do
8. if ((j ≥ i) and (pi �= θb−1)) then
9. Mj−i+1 ← Mj−i+1 + |pi − tj |

B. An O(|Σ|n log m)-Time Algorithm

An even periodic function can be decomposed into a
weighted sum of simpler trigonometric component func-
tions. In this way, the function can be expressed in terms
of O(2×period) product terms. Then, FFTs can be used
for the computation of these inner-products efficiently.
This idea was used in [6] to devise faster algorithms for
δ and (δ, γ)-Matching problems.

In the following, we explain how a different even
periodic function can be used; in the same way, to
efficiently solve the γ-Matching problem. The proposed
function is as follow:

f(x) = |x| for |x| ≤ �,

where � is the maximum absolute difference between any
element in T and any element in P . The above function
can be used to find the total difference as follows:

m∑
j=1

f(pj − ti+j−1).

Recall that f(x) can be expressed as a linear combi-
nation of 2� − 1 product terms. Then, f(x − y) can be
expressed as follows:

f(x− y) = α0r(0)+

�∑
k=1

αkr(k)ck(x)ck(y) +

�−1∑
k=1

αkr(k)sk(x)sk(y),

(5)

where

αk =

�∑
x=1−�

f(x)hk(x), ck(x) = cos(xkπ/�),

hk(x) = r(k) cos(xkπ/�), sk(x) = sin(xkπ/�),

and r(k) = 1/
√

2� if k mod � = 0 and r(k) = 1/
√

�,
otherwise.

Let’s analyze our algorithm. the value � van be cal-
culated in linear time. Then the total difference can
be computed; as in Equation (5), using 2� − 1 inner
products, each of which takes O(n log m) time. Com-
putation of γ-Matching from the total difference can be
performed in linear time. Therefore, the total running time
is O(�n log m). Since � = O(|Σ|), the overall running
time is O(|Σ|n log m).

This algorithm can be extended as in Subsection III-B
to handle the occurrence of “don’t cares” in P . Thus, the
γ-Matching for pattern with “don’t cares” can be calcu-
lated in O(|Σ|n log m) time.

V. (δ, γ)-MATCHING WITH DON’T CARES
ALGORITHM

In [6], an (δn log m)-time algorithm for (δ, γ)-
Matching without “don’t cares” was presented. The al-
gorithm follows the same method for the δ-Matching
algorithm. The only difference is the choice of the even
periodic function. Moreover the algorithm was extended
in [2] in the same way as described in Subsection III-B,
to handle the occurrences of the “don’t care” symbols in
the pattern P in O(δn log m) time; see [2], [6] for details.

VI. EXPERIMENTAL RESULTS

We implemented in C++, in homogeneous way, the
following five algorithms: two alternative algorithms for
the δ-Matching problem with “don’t cares”, the first runs
in O(|Σ|n(log m + |Σ|)) time, and the second requires
O(δn log m) time, another two algorithms for γ-Matching
problem with “don’t cares”, one is due to [2] and runs
in O(n

√

m log m) time and the other one is presented
in this paper and requires O(|Σ|n log m) time, and an
O(δn log m)-time algorithm for (δ, γ)-Matching. In the
rest of this section, these algorithms will be referred as
δ-Version 1, δ-Version 2, γ-Version 1, γ-Version 2 and
(δ, γ)-Version 1 respectively.

Remark 1. The test data was extracted mainly from
the albums Candle In The Wind 1997 by Elton John,
Baby One More Time by Britney Spears, Poovellam Un
Vaasam by Vidyasagar and Ali Arjuna by A. R. Rahman.
The extracted data was tweaked, without destroying the
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melody, to change the alphabet size and their length for
the experiments. The “don’t cares” were placed in the
patterns at random positions.

Timing Curves for the Algorithms  (m = 100, δ = 3, γ =  25, |Σ| = 70)
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Fig. 1. Timing curves for δ-, γ-, (δ, γ)-Matching algorithms with
“don’t cares”.

A. δ-Matching with Don’t Cares
The two versions of the algorithms for this problem,

namely δ-Version 1 and δ-Version 2, have the running
time O(|Σ|n(log m+|Σ|)) and O(δn log m), respectively.
Fig.1 shows that δ-Version 2 is faster than δ-Version 1 for
a wide range of text size n. Nevertheless, the latter seems
to come closer to the running time of the former in some
cases. One such case is when n = 4k. Apart from few
such places, δ-Version 2 seems to outperform δ-Version 1.
Furthermore, the difference in their running is very high,
for example when n = 6k, δ-Version 2 is 8.04 times
faster than δ-Version 1 (See Table I). The big difference
is due to the encoding scheme used in δ-Version 1 which
expands the text and the pattern |Σ| times longer.

This does not necessarily mean that we have to avoid
using δ-Version 1 all the times. The timing curves on
Fig. 2(a) and Fig. 2(b) provide an evidence that δ-Version
1 is the best choice when δ is very high or |Σ| is very
small. Furthermore, we could see that the alphabet used
in practice is small.

Thus, δ-Version 2 is superior to δ-Version 1 in general.
However, δ-Version 1 is a better choice when δ is large
or |Σ| is very small.

B. γ-Matching with Don’t Cares

The two γ-Matching algorithms have running time
O(n

√

mlogm) and O(|Σ|nlogm) respectively. Fig. 1
shows that γ-Version 1 always beats γ-Version 2 in
performance. Nonetheless, according to Table I, the ratio
of their running time is almost constant, 0.29 on average.
Besides, Fig. 2(c) illustrates the effect of |Σ| in the
running time. It clearly shows that when |Σ| is below a
certain value, 14 in this example, γ-Version 2 is a better
choice. Thus, γ-Version 1 may be preferred to γ-Version
2 for all cases, but when |Σ| is small.

C. (δ, γ)-Matching with Don’t Cares
Fig. 1 and Table I show a surprising result about the

running time of the (δ, γ)-Version 1. That is, solving

Comparision of δ-Matching Algorithms  (m = 100, n = 500, |Σ| = 30)
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(a) Comparing the running time of the δ-Matching algorithms as δ varies.

  Comparision of δ-Matching Algorithms  (m = 100, n = 500, δ = 3)
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(b) Comparing the running time of the δ-Matching algorithms as |Σ|

varies.

Comparision of γ-Matching Algorithms (m = 100, n = 500, γ = 25)

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12
|�| x 10

Ti
m

e 
(in

 m
s)

�-Version 1
�-Version 2

(c) Comparing the running time of the γ-Matching algorithms as |Σ|

varies.

Fig. 2. Timing curves for δ-, γ-Matching algorithms.

TABLE I
RUNNING TIME OF THE ALGORITHMS IN MILLISECONDS WHEN

m = 100, δ = 3, γ = 25, |Σ| = 70 AND

Number of “Don’t Cares” in the Pattern = 5

n
δ-Matching γ-Matching

(δ, γ)-
Matching

Version 1 Version 2 Version 1 Version 2 Version 1
2k 1781 218 812 2938 375
4k 1015 796 2359 6359 1750
6k 4781 594 2218 7718 1093
8k 1891 735 2844 9703 1328

10k 2421 1250 3969 13641 1953
12k 2781 1171 4484 15297 2093
14k 11391 1453 5140 17610 2531
16k 4703 1515 5875 19641 2750
18k 5062 1719 6500 23000 3078
20k 6813 1906 7360 26000 3390
22k 5813 2000 7672 26546 3797
24k 6750 2281 8969 30610 4094
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γ-Matching using the function technique, i.e. using an
even periodic function and their cosine expansions for
the computation, takes much longer than solving (δ, γ)-
Matching using the same technique. But γ-Matching is
just a part of (δ, γ)-Matching along with an instance of δ-
Matching. The reason for this can be simply explained as
follows: When the function technique is used, the supple-
mentary γ-Matching in (δ, γ)-Matching takes O(δnlogm)

time, but the stand alone γ-Matching takes O(|Σ|nlogm).
Moreover, |Σ| is much greater than δ in this example, and
is usually the case.

Fig. 1 provides evidence of another interesting feature
of (δ, γ)-Version 1. The vertical-difference between the
curves corresponding to δ-Version 2 and (δ, γ)-Version 1
is very small. But (δ, γ)-Version 1 executes δ-Version 2 as
its first step. This depicts that, only a small fraction of the
time is spent in the supplementary γ-Matching. Having
said this, it is obvious that no other combinations of δ-
and γ-Matching can come even closer to (δ, γ)-Version 1.

VII. CONCLUSION

We have given experimental analysis of five now-best
algorithms for approximate matching problems on string
of integers allowing the presence of “don’t cares”. In
particular, for a given text T1..n and a pattern P1..m

with “don’t cares”, we have implemented two algorithms
for computing the δ-Matching in O(|Σ|n(log m + |Σ|))

and O(δn log m) time, respectively. Additionally, we
have implemented two algorithm for computing the γ-
Matching in O(|Σ|nlogm) and O(n

√

m logm) time re-
spectively. Additionally, an O(δn log m)-time algorithm
for the (δ, γ)-Matching has also been implemented.

It remains as an open problem whether the techniques
used in this paper can be implemented to solve other
numeric string problems. One of such is the problem of
shift-matching, where the values in the pattern can be
shifted up or down by some constant when looking for a
match.
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